A Parameter Free Clustering Algorithm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parameter-free Hedging Algorithm

We study the problem of decision-theoretic online learning (DTOL). Motivated by practical applications, we focus on DTOL when the number of actions is very large. Previous algorithms for learning in this framework have a tunable learning rate parameter, and a barrier to using online-learning in practical applications is that it is not understood how to set this parameter optimally, particularly...

متن کامل

A Parameter-free Affinity Based Clustering

Several methods have been proposed to estimate the number of clusters in a dataset; the basic ideal behind all of them has been to study an index that measures inter-cluster separation and intra-cluster cohesion over a range of cluster numbers and report the number which gives an optimum value of the index. In this paper we propose a simple, parameter free approach that is like human cognition ...

متن کامل

ZOBOV: a parameter-free void-finding algorithm

ZOBOV (ZOnes Bordering On Voidness) is an algorithm that finds density depressions in a set of points, without any free parameters, or assumptions about shape. It uses the Voronoi tessellation to estimate densities, which it uses to find both voids and subvoids. It also measures probabilities that each void or subvoid arises from Poisson fluctuations. This paper describes the ZOBOV algorithm, a...

متن کامل

FPBIL: A Parameter-free Evolutionary Algorithm

The purpose of this chapter is to describe a new algorithm named FPBIL (parameter-Free PBIL), an evolution of PBIL (Population-Based Incremental Learning). FPBIL, as well as PBIL (Baluja, 1994), Genetic Algorithms (GAs) (Holland, 1992) and others are general purpose population-based evolutionary algorithms. The success of GAs is unquestionable (Goldberg, 1989). Despite that, PBIL has shown to b...

متن کامل

The X-Alter Algorithm: A Parameter-Free Method of Unsupervised Clustering

Using quantization techniques, Laloë (2010) de ned a new clustering algorithm called Alter. This L-based algorithm is proved to be convergent, but su ers two major aws. The number of clusters K has to be supplied by the user and the computational cost is high. In this article, we adapt the X-means algorithm [Pelleg and Moore, 2000] to solve both problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Applications

سال: 2017

ISSN: 0975-8887

DOI: 10.5120/ijca2017913574